Abstract

We consider the repeated assignment problem (RAP), which is a K-fold repetition of the n × n linear assignment problem (LAP), with the additional requirement that no assignment can be repeated more than once. In actual applications K is typically much smaller than n. First, we derive upper and lower bounds respectively by a heuristic together with local search, and an efficient method solving the continuous relaxation. The latter also solves a Lagrangian relaxation, such that the related pegging test, to fix variables at zero or one, decomposes into K independent pegging tests to LAPs. These can be solved exactly by transforming them into all-pairs shortest path problems. Together with these procedures, we also employ a virtual pegging test and reduce RAP in size. Numerical experiments show that the reduced instances, with K ≪ n, can be solved exactly using standard MIP solvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.