Abstract
SUMMARY The All-Pairs Shortest Paths (APSP) problem is a graph problem which can be solved by a three-nested loop program. The Cell Broadband Engine (Cell/B.E.) is a heterogeneous multi-core processor that offers the high single precision floating-point performance. In this paper, a solution of the APSP problem on the Cell/B.E. is presented. To maximize the performance of the Cell/B.E., a blocked algorithm for the APSP problem is used. The blocked algorithm enables reuse of data in registers and utilizes the memory hierarchy. We also describe several optimization techniques for effective implementation of the APSP problem on the Cell/B.E. The Cell/B.E. achieves the performance of 8.45Gflop/s for the APSP problem by using one SPE and 50.6Gflop/s by using six SPEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.