Abstract

Following the initial implementation of a full-scale spiking neural network (SNN) of the cortical microcircuit on NEST, the work was replicated to simulate on SpiNNaker, the Juelich CPU cluster, and the Sussex GPU cluster, in order to compare the performances on the different platforms. All of these researches use the Leaky Integrate and Fire (LIF) model as the basic unit of spiking neurons. In comparison, Izhikevich's spiking neuron models (IZK) can mimic a larger variety of known cortical neuronal dynamics. In spite of this versatility, the IZK neuron is easy to implement and computes fast. In this work, we implement the above-mentioned cortical microcircuit at a reduced-scale and using IZK neurons on SpiNNaker. This is aligned with our ongoing research on a reduced-scale thalamocortical circuit of vision with changing IZK neuron dynamics on SpiNNaker. We validate our SNN with the LIF-based full-scale cortical microcircuit by providing Poisson noise inputs, and measuring objectively the outputs in terms of spike rate, irregularity and synchrony. Our reduced-scale SNN shows similar dynamics to the full-scale SNN and operates within the Asynchronous Irregular regime defined by set bounds on the three quantitative attributes. Next, we test our SNN with inputs from a Dynamic Vision Sensor- (DVS-)based electronic retina (e-retina) that converted a simple periodic environmental input to spike trains. With current parameter settings, the model output identifies the low-frequency, but not the high frequency periodic inputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call