Abstract

Component mode synthesis is a technique to simplify the analysis of complicated finite element models. A structure is split into substructures from which reduced order models can be generated and subsequently assembled. A model reduction performance gain can be limited if the component interfaces contain many degrees of freedom, which is often the case for high resolution models. In this paper a substructuring framework with interface reduction is presented. The method first splits a detailed model into substructures. The substructures’ fine mesh is then coarsened on the internal region, while keeping the boundary mesh intact. Thereafter a Guyan reduction is performed on each coarse mesh substructure. The Guyan computations are cheap due to the reduced size of the linear equation system necessary to solve for the coarse mesh system. After synthesis of the statically reduced systems, a reduction basis for the interface degrees of freedom is computed. Thereafter a Craig-Bampton reduction is performed on each fine mesh substructure using projections with the reduced interface degrees of freedom and fixed interface modes. The method is verified on a dense mesh plate model consisting of two substructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.