Abstract
We analyze a two-level method of discretizing the stream function form of the Navier-Stokes equations. This report presents the two-level algorithm and error analysis for the case of conforming elements. The two-level algorithm consists of solving a small nonlinear system on the coarse mesh, then solving a linear system on the fine mesh. The basic result states that the error between the coarse and fine meshes are related superlinearly via: ▪ As an example, if the Clough-Tocher triangles or the Bogner-Fox-Schmit rectangles are used, then the coarse and fine meshes are related by h = O(H 3 2 | lnH| 1 4 ) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.