Abstract
We study a single removable server in an infinite and a finite queueing systems with Poisson arrivals and general distribution service times. The server may be turned on at arrival epochs or off at service completion epochs. We present a recursive method, using the supplementary variable technique and treating the supplementary variable as the remaining service time, to obtain the steady state probability distribution of the number of customers in a finite system. The method is illustrated analytically for three different service time distributions: exponential, 3-stage Erlang, and deterministic. Cost models for infinite and finite queueing systems are respectively developed to determine the optimal operating policy at minimum cost.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have