Abstract

A new high-order (> 2nd order) cell-centered finite volume method is presented for incompressible flow simulation on unstructured meshes. Artificial compressibility is employed to couple the continuity and momentum equations in a manner that allows them to be solved simultaneously. A new numerical stencil, a so-called wrapping stencil, is utilized for linear and quadratic solution reconstruction in order to achieve more accurate and robust solution reconstruction not only for the interior cells, but also for the cells on the boundary, where fewer neighboring cells typically exist. The effectiveness of the current algorithm is demonstrated by various test cases, including an analytical solution reconstruction test, Kovasznay flow simulations with various Reynolds numbers, a driven cavity flow, and flow past a square cylinder. Based on the comparison with the standard low order scheme, the proposed second and third order schemes, based on linear and quadratic solution reconstruction, show superior accuracy, which sheds light on the method's applicability in solving more challenging incompressible flow problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.