Abstract

High-temperature superconducting (HTS) bulks in HTS Maglev systems are always arrayed in a combination to make full use of the applied magnetic field of the permanent magnet guideway (PMG). An excellent combination scheme improves the overall levitation and guidance performance significantly. In this paper, a three-dimensional (3D) electromagnetic model of the real HTS-PMG maglev system with an HTS bulk array was established. This model comprehensively expresses the influence of various factors on the E – J relationship and the 3D spatial distribution of J c, including internal factors such as the inhomogeneity and anisotropy of electromagnetic characteristics, as well as external factors such as applied magnetic field and working temperature. A ternary function was proposed to describe the uneven distribution of J c caused by the bulk’s growth process, which is an interesting phenomenological modeling attempt. In the simulations of the bulks’ combinations, perfect magnetic conductor boundary conditions were applied on the contact surface to simulate two bulks touching each other. Besides, the research target includes reproducing the shapes, the orientations, and the combination scheme of HTS bulks in the real PMG magnetic field. The calculation results of levitation force of the cylindrical bulk under different spatial orientations above the PMG were compared with the experimental results, through which the accuracy of the model was verified. On this basis, the influence of the magnetic field generated by the superconducting current on the nearby bulk was further explored. It was found that this magnetic field has a small contribution to the total levitation force and a relatively obvious influence on the guidance force. When the lateral displacement is large, such as 5 mm, the magnetic field generated by the superconducting current slightly increases the total guidance force stiffness. According to more simulated conditions, some optimization strategies on bulk combinations were proposed. This work provides not only a 3D descriptive model for fitting the real multi-bulk-combination maglev scenarios but also some optimization strategies for the HTS maglev transportation applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call