Abstract

An accurate prediction of energy consumption in electric buses (EBs) can effectively reduce driving range anxiety and facilitate bus scheduling. Existing studies have not provided real-time predictions based on distance traveled using integrated machine learning methods. This study proposes a framework for predicting EB energy consumption, which is primarily divided into energy consumption estimation, kinematic feature prediction, and energy consumption prediction. The framework begins by fusing high-resolution real-world EB data with weather and road information, from which five types of influencing factors are extracted for different driving distances. An eXtreme Gradient Boosting (XGBoost) model is developed to evaluate feature importance and estimate the energy consumption rate (ECR). The SHapley Additive explanation (SHAP) method is then used to analyze the factors affecting the ECR. To predict important kinematic characteristics, spatial and temporal characteristics are captured using Long Short-Term Memory (LSTM) and a fully connected neural network. Finally, the predicted kinematic characteristics and the XGBoost model are combined to enable real-time prediction of the ECR. The results indicate that estimation and prediction accuracies gradually improve with increased driving distance. The mean absolute error of average ECR decreases from 43.9 % for 100 m to 7.5 % for 16 km. Temperature, bus stop density, and peak periods emerge as the most significant external factors after 8 km. This framework shows an improvement of over 10 % in most scenarios compared with other models in the literature, enabling individual forecasts of energy consumption currently in transit and aiding in the calculation of remaining battery-supported distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.