7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3390/en15114160
Copy DOIJournal: Energies | Publication Date: Jun 6, 2022 |
Citations: 13 | License type: CC BY 4.0 |
The energy consumption of electric vehicles is closely related to the problems of charging station planning and vehicle route optimization. However, due to various factors, such as vehicle performance, driving habits and environmental conditions, it is difficult to estimate vehicle energy consumption accurately. In this work, a physical and data-driven fusion model was designed for electric bus energy consumption estimation. The basic energy consumption of the electric bus was modeled by a simplified physical model. The effects of rolling drag, brake consumption and air-conditioning consumption are considered in the model. Taking into account the fluctuation in energy consumption caused by multiple factors, a CatBoost decision tree model was constructed. Finally, a fusion model was built. Based on the analysis of electric bus data on the big data platform, the performance of the energy consumption model was verified. The results show that the model has high accuracy with an average relative error of 6.1%. The fusion model provides a powerful tool for the optimization of the energy consumption of electric buses, vehicle scheduling and the rational layout of charging facilities.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.