Abstract
This paper describes a method for real-time, autonomous, joint detection-classification of humpback whale vocalizations. The approach adapts the spectrogram correlation method used by Mellinger and Clark [J. Acoust. Soc. Am. 107, 3518-3529 (2000)] for bowhead whale endnote detection to the humpback whale problem. The objective is the implementation of a system to determine the presence or absence of humpback whales with passive acoustic methods and to perform this classification with low false alarm rate in real time. Multiple correlation kernels are used due to the diversity of humpback song. The approach also takes advantage of the fact that humpbacks tend to vocalize repeatedly for extended periods of time, and identification is declared only when multiple song units are detected within a fixed time interval. Humpback whale vocalizations from Alaska, Hawaii, and Stellwagen Bank were used to train the algorithm. It was then tested on independent data obtained off Kaena Point, Hawaii in February and March of 2009. Results show that the algorithm successfully classified humpback whales autonomously in real time, with a measured probability of correct classification in excess of 74% and a measured probability of false alarm below 1%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have