Abstract

Antibody-dependent cellular phagocytosis (ADCP) is a cellular process by which antibody-opsonized targets (pathogens or cells) activate the Fc receptors on the surface of phagocytes to induce phagocytosis, resulting in internalization and degradation of pathogens or target cells through phagosome acidification. Besides NK cells-mediated antibody-dependent cellular cytotoxicity (ADCC), tumor-infiltrated monocytes and macrophages can directly kill tumor cells in the presence of tumor antigen-specific antibodies through ADCP, representing another attractive strategy for cancer immunotherapy. Even though several methods have been developed to measure ADCP, an automated and high-throughput quantitative assay should offer highly desirable advantages for drug discovery. In this study we established a new ADCP assay to identify therapeutical monoclonal antibodies (mAbs) that facilitate macrophages phagocytosis of live target cells. We used Incucyte, an imaging system for live cell analysis. By labeling the live target cells with a pH sensitive dye (pHrodo), we successfully monitored the ADCP in real time. We demonstrated that our image-based assay is robust and quantitative, suitable for screening and characterization of therapeutical mAbs that directly kill target cells through ADCP. Furthermore, we found different subtypes of macrophages have distinct ADCP activities using both mouse and human primary macrophages differentiated in vitro. By studying various mAbs with mutations in their Fc regions using our assay, we showed that the variants with increased binding to Fc gamma receptors (FcγRs) have enhanced ADCP activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.