Abstract
This article presents an efficient design and implementation of a real-time spike sorting system using unsupervised clustering. We utilize the online sorting (OSort) algorithm and model it first in both floating-point and fixed-point numerical representations to accurately assess the feasibility of our hardware architecture and also reliably analyze the sorting accuracy. For efficient hardware realization of OSort, we propose a modified parallel OSort algorithm. By reducing the number of required memory accesses, the number of computations performed for the management and upkeep of cluster averages and cluster merging is substantially reduced. By limiting the number of supported clusters per channel, the classification/clustering latency is significantly reduced compared to the previously published work, making the designed OSort system applicable for in-vivo spike sorting. The proposed OSort hardware architecture utilizes a novel memory configuration scheme to parallelize the OSort algorithm, which allows us to avoid using relatively large memory queues for storing detected spike waveforms and process them concurrently to the spike cluster management. The characteristics and implementation results of the designed OSort-based spike sorting system on a Xilinx Artix-7 field-programmable gate array (FPGA) are presented. The ASIC implementation of the designed system is estimated to occupy 2.57 mm2 in a standard 32-nm CMOS process. Post-layout power estimation shows that the ASIC will dissipate 2.78mW, while operating at 24kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.