Abstract

Stereo images acquired by a stereo camera setup provide depth estimation of a scene. Numerous machine vision applications deal with retrieval of 3D information. Disparity map recovery from a stereo image pair involves computationally complex algorithms. Previous methods of disparity map computation are mainly restricted to software-based techniques on general-purpose architectures, presenting relatively high execution time. In this paper, a new hardware-implemented real-time disparity map computation module is realized. This enables a hardware-based fuzzy inference system parallel-pipelined design, for the overall module, implemented on a single FPGA device with a typical operating frequency of 138 MHz. This provides accurate disparity map computation at a rate of nearly 440 frames per second, given a stereo image pair with a disparity range of 80 pixels and 640 × 480 pixels spatial resolution. The proposed method allows a fast disparity map computational module to be built, enabling a suitable module for real-time stereo vision applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.