Abstract
Many machine vision applications deal with depth estimation in a scene. Disparity map recovery from a stereo image pair has been extensively studied by the computer vision community. Previous methods are mainly restricted to software based techniques on general-purpose architectures, presenting relatively high execution time due to the computationally complex algorithms involved. In this paper a new hardware module suitable for real-time disparity map computation module is realized. This enables a hardware based occlusion-aware parallel-pipelined design, implemented on a single FPGA device with a typical operating frequency of 511 MHz. It provides accurate disparity map computation at a rate of 768 frames per second, given a stereo image pair with a disparity range of 80 pixels and 640x480 pixel spatial resolution. The proposed method allows a fast disparity map computational module to be built, enabling a suitable module for real-time stereo vision applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.