Abstract
In eutrophic coastal waters, harmful algal blooms (HAB) often occur and present challenges to environmental and fisheries management. Despite decades of research on HAB early warning systems, the field validation of algal bloom forecast models have received scant attention. We propose a daily algal bloom risk forecast system based on: (i) a vertical stability theory verified against 191 past algal bloom events; and (ii) a data-driven artificial neural network (ANN) model that assimilates high frequency data to predict sea surface temperature (SST), vertical temperature and salinity differential with an accuracy of 0.35oC, 0.51oC, and 0.58 psu respectively. The model does not rely on past chlorophyll measurements and has been validated against extensive field data. Operational forecasts are illustrated for representative algal bloom events at a marine fish farm in Tolo Harbour, Hong Kong. The robust model can assist with traditional onsite monitoring as well as artificial-intelligence (AI) based methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have