Abstract

The level set method can express smooth boundaries in structural topology optimization with the level set function’s zero-level contour. However, most applications still use rectangular/hexahedral mesh in finite element analysis, which results in zig-zag interfaces between the void and solid phases. We propose a reaction diffusion-based level set method using the adaptive triangular/tetrahedral mesh for structural topology optimization in this work. Besides genuinely expressing smooth boundaries, such a body-fitted mesh can increase finite element analysis accuracy. Unlike the traditional upwind algorithm, the proposed method breaks through the constraint of Courant–Friedrichs–Lewy stability condition with an updating scheme based on finite element analysis. Numerical examples for minimum mean compliance and maximum output displacement at specified positions, in both 2D and 3D, converge within dozens of iterations and present elegant structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.