Abstract
The use of in situ time-resolved dispersive X-ray absorption spectroscopy (DXAS) to monitor the formation of Cu2(OH)3Cl particles in an aqueous solution is reported. The measurements were performed using a dedicated reaction cell, which enabled the evolution of the Cu K-edge X-ray absorption near-edge spectroscopy to be followed during mild chemical synthesis. The formed Cu2(OH)3Cl particles were also characterized by synchrotron-radiation-excited X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. The influence of polyvinylpyrrolidone (PVP) on the electronic and structural properties of the formed particles was investigated. The results indicate clearly the formation of Cu2(OH)3Cl, with or without the use of PVP, which presents very similar crystalline structures in the long-range order. However, depending on the reaction, dramatic differences were observed by insitu DXAS in the vicinities of the Cu atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.