Abstract

A ratiometric fluorescent assay is fabricated for the evaluation of alkaline phosphatase (ALP) activity. This assay is composed of ionic liquid-functionalized carbon dots (IL-CDs) with blue fluorescence signal at 470nm and 2,3-diaminophenazine (DAP) with yellow fluorescence signal at 570nm. IL-CDs were synthesized via electrochemical method by using ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) and ultrapure water as precursors. DAP is produced by the oxidation reaction between o-phenylenediamine and H2O2 under the catalysis of horseradish peroxidase. H2O2 is reduced by ascorbic acid which is the hydrolysis product of ascorbic acid 2-phosphate under the catalysis of ALP, finally reducing the amount of DAP. The activity of ALP is evaluated through the ratiometric fluorescent signal between IL-CDs and DAP via Förster resonance energy transfer. Under optimal experimental conditions, this ratiometric fluorescent assay has a response that covers the 0.04 to 3.2UL-1 (12 to 960pM) ALP activity. This assay possesses ultralow detection limit of 0.012UL-1 (3.6pM) for ALP and high selectivity forALP among several enzymes. The method was used to measure ALP activity in human serum samples with satisfying results. Graphical abstract Schematic presentation of IL-CDs-based ratiometric fluorescent assay for ALP activity evaluation via FRET strategy between IL-CDs and DAP. This ratiometric fluorescent assay possessed low detection limit of ALP activity (0.012UL-1) and high selectivity among several enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call