Abstract
Human immunodeficiency virus 1 (HIV-1) encephalopathy is thought to result in part from the toxicity of HIV-1 envelope glycoprotein gp120 for neurons. Experimental systems for studying the effects of gp120 and other HIV proteins on the brain have been limited to the acute effects of recombinant proteins in vitro or in vivo in simian immunodeficiency virus-infected monkeys. We describe an experimental rodent model of ongoing gp120-induced neurotoxicity in which HIV-1 envelope is expressed in the brain using an SV40-derived gene delivery vector, SV(gp120). When it is inoculated stereotaxically into the rat caudate putamen, SV(gp120) caused a partly hemorrhagic lesion in which neuron and other cell apoptosis continues for at least 12 weeks. Human immunodeficiency virus gp120 is expressed throughout this time, and some apoptotic cells are gp120 positive. Malondialdehyde and 4-hydroxynonenal assays indicated that there was lipid peroxidation in these lesions. Prior administration of recombinant SV40 vectors carrying antioxidant enzymes, copper/ zinc superoxide dismutase or glutathione peroxidase, was protective against SV(gp120)-induced oxidative injury and apoptosis. Thus, in vivo inoculation of SV(gp120) into the rat caudate putamen causes ongoing oxidative stress and apoptosis in neurons and may therefore represent a useful animal model for studying the pathogenesis and treatment of HIV-1 envelope-related brain damage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have