Abstract
BackgroundThe speed of translation elongation is primarily determined by the abundance of tRNAs. Thus, the codon usage influences the rate with which individual mRNAs are translated. As the nature of tRNA pools and modifications can vary across biological conditions, codon elongation rates may also vary, leading to fluctuations in the protein production from individual mRNAs. Although it has been observed that functionally related mRNAs exhibit similar codon usage, presumably to provide an effective way to coordinate expression of multiple proteins, experimental evidence for codon-mediated translation efficiency modulation of functionally related mRNAs in specific conditions is scarce and the associated mechanisms are still debated.ResultsHere, we reveal that mRNAs whose expression increases during cell proliferation are enriched in rare codons, poorly adapted to tRNA pools. Ribosome occupancy profiling and proteomics measurements show that upon increased cell proliferation, transcripts enriched in rare codons undergo a higher translation boost than transcripts with common codons. Re-coding of a fluorescent reporter with rare codons increased protein output by ~ 30% relative to a reporter re-coded with common codons. Although the translation capacity of proliferating cells was higher compared to resting cells, we did not find evidence for the regulation of individual tRNAs. Among the models that were proposed so far to account for codon-mediated translational regulation upon changing conditions, the one that seems most consistent with our data involves a global upregulation of ready-to-translate tRNAs, which we show can lead to a higher increase in the elongation velocity at rare codons compared to common codons.ConclusionsWe propose that the alleviation of translation bottlenecks in rapidly dividing cells enables preferential upregulation of pro-proliferation proteins, encoded by mRNAs that are enriched in rare codons.
Highlights
Due to the redundancy of the genetic code, the same protein can be encoded in many distinct mRNA sequences
By sorting cells in the G1 and G2/M cell cycle phases and profiling their transcriptomes (Fig. 1a), we found that mRNAs encoding proteins that are involved in cell adhesion and specification were preferentially expressed in G1 cells, whereas mRNAs encoding proteins responsible for DNA replication and cell division were upregulated in G2/M cells (Additional file 1: Figure S1A, B)
We used the t test to quantify these differences; for any codon, a positive or negative t value (G2M/G1 codon score, Fig. 1b, c and Additional file 3: Table S2) reflects its preferential use in mRNAs with higher expression in the G2/M or G1 phase, respectively. mRNAs enriched in the G2/M phase exhibited a strong preference for codons whose third nucleotide was an adenine or uridine (A/U), whereas G1-enriched mRNAs used codons ending in guanine or cytosine (G/C) (Fig. 1c)
Summary
Due to the redundancy of the genetic code, the same protein can be encoded in many distinct mRNA sequences. Recent studies have highlighted examples where the abundance and modifications of individual tRNAs are adjusted to match the codon usage of functionally related genes that are expressed in individual human tissues [22, 23], during cell differentiation [24,25,26] and cellular stress [27], or in tumors [28]. As the nature of tRNA pools and modifications can vary across biological conditions, codon elongation rates may vary, leading to fluctuations in the protein production from individual mRNAs. it has been observed that functionally related mRNAs exhibit similar codon usage, presumably to provide an effective way to coordinate expression of multiple proteins, experimental evidence for codon-mediated translation efficiency modulation of functionally related mRNAs in specific conditions is scarce and the associated mechanisms are still debated
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have