Abstract

BackgroundCassava mosaic disease (CMD) is a major constraint to cassava production in sub-Saharan Africa. Under field conditions, evaluation for resistance to CMD takes 12–18 months, often conducted across multiple years and locations under pressure from whitefly-mediated transmission. Under greenhouse or laboratory settings, evaluation for resistance or susceptibility to CMD involves transmission of the causal viruses from an infected source to healthy plants through grafting, or by using Agrobacterium-mediated or biolistic delivery of infectious clones. Following inoculation, visual assessment for CMD symptom development and recovery requires 12–22 weeks. Here we report a rapid screening system for determining resistance and susceptibility to CMD based on virus-induced gene silencing (VIGS) of an endogenous cassava gene.ResultsA VIGS vector was developed based on an infectious clone of the virulent strain of East African cassava mosaic virus (EACMV-K201). A sequence from the cassava (Manihot esculenta) ortholog of Arabidopsis SPINDLY (SPY) was cloned into the CP position of the DNA-A genomic component and used to inoculate cassava plants by Helios® Gene Gun microparticle bombardment. Silencing of Manihot esculenta SPY (MeSPY) using MeSPY1-VIGS resulted in shoot-tip necrosis followed by death of the whole plant in CMD susceptible cassava plants within 2–4 weeks. CMD resistant cultivars were not affected and remained healthy after challenge with MeSPY1-VIGS. Significantly higher virus titers were detected in CMD-susceptible cassava lines compared to resistant controls and were correlated with a concomitant reduction in MeSPY expression in susceptible plants.ConclusionsA rapid VIGS-based screening system was developed for assessing resistance and susceptibility to CMD. The method is space and resource efficient, reducing the time required to perform CMD screening to as little as 2–4 weeks. It can be employed as a high throughput rapid screening system to assess new cassava cultivars and for screening transgenic, gene edited and breeding lines under controlled growth conditions.

Highlights

  • Cassava mosaic disease (CMD) is a major constraint to cassava production in sub-Saharan Africa

  • Plants challenged with GFP-virus-induced gene silencing (VIGS) were scored for development of CMD symptoms using an established visual scoring system with a scale of 0–5 [25]

  • Production of East African cassava mosaic virus (EACMV)-K201 VIGS clones and verification of infectivity A VIGS system was developed by modifying the coat protein (CP) nucleotide sequence of the DNA-A component of the virulent infectious clone EACMV-K201 [20] to generate the VIGS construct p8202

Read more

Summary

Introduction

Cassava mosaic disease (CMD) is a major constraint to cassava production in sub-Saharan Africa. Evaluation for resistance to CMD takes 12–18 months, often conducted across multiple years and locations under pressure from whitefly-mediated transmission. Under greenhouse or laboratory settings, evaluation for resistance or susceptibility to CMD involves transmission of the causal viruses from an infected source to healthy plants through grafting, or by using Agrobacterium-mediated or biolistic delivery of infectious clones. In 2014, over 50% of the world’s cassava production took place in subSaharan Africa, where 146.8 million tons were harvested [1]. CMGs are single-stranded bipartite DNA viruses in the family Geminiviridae, genus Begomovirus, comprised of 11 species, two of which are present in the Indian sub-continent, with the rest endemic to Africa [4, 5].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.