Abstract

BackgroundMorphogenic culture systems are central to crop improvement programs that utilize transgenic and genome editing technologies. We previously reported that CMD2-type cassava (Manihot esculenta) cultivars lose resistance to cassava mosaic disease (CMD) when passed through somatic embryogenesis. As a result, these plants cannot be developed as products for deployment where CMD is endemic such as sub-Saharan Africa or the Indian sub-continent.ResultIn order to increase understanding of this phenomenon, 21 African cassava cultivars were screened for resistance to CMD after regeneration through somatic embryogenesis. Fifteen cultivars were shown to retain resistance to CMD through somatic embryogenesis, confirming that the existing transformation and gene editing systems can be employed in these genetic backgrounds without compromising resistance to geminivirus infection. CMD2-type cultivars were also subjected to plant regeneration via caulogenesis and meristem tip culture, resulting in 25–36% and 5–10% of regenerated plant lines losing resistance to CMD respectively.ConclusionsThis study provides clear evidence that multiple morphogenic systems can result in loss of resistance to CMD, and that somatic embryogenesis per se is not the underlying cause of this phenomenon. The information described here is critical for interpreting genomic, transcriptomic and epigenomic datasets aimed at understanding CMD resistance mechanisms in cassava.

Highlights

  • Morphogenic culture systems are central to crop improvement programs that utilize transgenic and genome editing technologies

  • This study provides clear evidence that multiple morphogenic systems can result in loss of resistance to cassava mosaic disease (CMD), and that somatic embryogenesis per se is not the underlying cause of this phenomenon

  • Screening cassava cultivars for CMD resistance after passage through somatic embryogenesis We previously reported that CMD2-type cassava plants that had been regenerated through somatic embryogenesis lose resistance to CMD but that no such effect is observed in cultivars carrying CMD1 and CMD3 resistance mechanisms [4]

Read more

Summary

Introduction

Morphogenic culture systems are central to crop improvement programs that utilize transgenic and genome editing technologies. We previously reported that CMD2-type cassava (Manihot esculenta) cultivars lose resistance to cassava mosaic disease (CMD) when passed through somatic embryogenesis. As a result, these plants cannot be developed as products for deployment where CMD is endemic such as sub-Saharan Africa or the Indian sub-continent. We recently reported that all plants of CMD2-type cultivars regenerated through somatic embryogenesis lose resistance to CMD and develop severe mosaic symptoms when inoculated with infectious geminivirus clones in the greenhouse, and when exposed to viliferous whiteflies in the field. Cultivars tested that carry CMD1 and CMD3 resistance mechanisms did not suffer from this phenomenon with plants regenerated through somatic embryogenesis remaining resistant to CMD [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call