Abstract

Experimental autoimmune encephalomyelitis (EAE) shares similar immunological and clinical features with multiple sclerosis (MS), and is therefore widely used as a model to identify new drug targets for better patient treatment. MS is characterized by several different disease courses: relapsing-remitting MS (RRMS), primary progressive MS (PPMS), secondary progressive MS (SPMS), and a rare progressive-relapsing form of MS (PRMS). Although animal models do not accurately mimic all of these contrasting human disease phenotypes, there are EAE models that reflect some of the different clinical manifestations of MS. For example, myelin oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6J mice mimics human PPMS, while myelin proteolipid protein (PLP)-induced EAE in SJL/J mice resembles RRMS. Other autoantigens, such as myelin basic protein (MBP), and a number of different mouse strains are also used to study EAE. To induce disease in these autoantigen-immunization EAE models, a water-in-oil emulsion is prepared and injected subcutaneously. The majority of EAE models also require an injection of pertussis toxin for the disease to develop. For consistent and reproducible EAE induction, a detailed protocol to prepare the reagents to produce antigen/adjuvant emulsions is necessary. The method described here takes advantage of a standardized method to generate water-in-oil emulsions. It is simple and fast and uses a shaking homogenizer instead of syringes to prepare quality-controlled emulsions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call