Abstract

A rapid in situ immobilization process was developed based on conventional separation technique of immobilized metal affinity chromatography (IMAC) and was studied in the case of D-amino acid oxidase (DAAO) with binding-enhancing Heli-tag (His-Arg-Asn-Tyr-Gly-Gly-Cys-Cys-Gly). A recombinant Escherichia coli strain JM105 (Δase)/pGEMK-R-DAAO-Heli was successfully constructed to synthesize chimeric protein DAAO-Heli. Without additional purification procedure, the tagged enzyme DAAO-Heli could be directly immobilized to EP-IDA-Ni(2+) support with purity of 90% and DAAO activity of over 70U/g support. Experimental results showed that the immobilized DAAO-Heli was 73 times more thermally stable than free enzyme. Besides, it remained 67% of initial activity after 100 cycles of batch catalysis and its operational stability was improved 36 times than that of the previously IMAC-immobilized DAAO-His. Furthermore, the epoxy (EP) support could be easily recovered and repeatedly used with simple steps, which could reduce the immobilization costs significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call