Abstract
The statin is the primary cholesterol-lowering drug. Monacolin J (MJ) is a key intermediate in the biosynthetic pathway of statin. It was obtained in industry by the alkaline hydrolysis of lovastatin. The hydrolysis process resulted in multiple by-products and expensive cost of wastewater treatment. In this work, we used Pichia pastoris as the host to produce the MJ. The biosynthesis pathway of MJ was built in P. pastoris. The stable recombinant strain MJ2 was obtained by the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 genome-editing tool, and produced the MJ titer of 153.6 ± 2.4mg/L. The metabolic engineering was utilized to enhance the production of MJ, and the fermentation condition was optimized. The MJ titer of 357.5 ± 5.0mg/L was obtained from the recombinant strain MJ5-AZ with ATP-dependent citrate lyase (ACL), glucose-6-phosphate dehydrogenase (ZWF1) and four lovB genes, 132.7% higher than that from the original strain MJ2. The recombinant strain MJ5-AZ was cultured in a 7-L fermenter, and the MJ titer of 1493.0 ± 9.2mg/L was achieved. The results suggested that increasing the gene dosage of rate-limiting step in the biosynthesis pathway of chemicals could improve the titer of production. It might be applicable to the production optimization of other polyketide metabolites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.