Abstract

Eradicating subcutaneous bacterial infections remains a significant challenge. This work reports an injectable system of hollow microspheres (HMs) that can rapidly produce localized heat activated by near-infrared (NIR) light and control the release of an antibiotic via a “molecular switch” in their polymer shells, as a combination strategy for treating subcutaneous abscesses. The HMs have a shell of poly(d,l-lactic-co-glycolic acid) (PLGA) and an aqueous core that is comprised of vancomycin (Van) and polypyrrole nanoparticles (PPy NPs), which are photothermal agents. Experimental results demonstrate that the micro-HMs ensure efficiently the spatial stabilization of their encapsulated Van and PPy NPs at the injection site in mice with subcutaneous abscesses. Without NIR irradiation, the HMs elute a negligible drug concentration, but release substantially more when exposed to NIR light, suggesting that this system is suitable as a photothermally-responsive drug delivery system. The combination of photothermally-induced hyperthermia and antibiotic therapy with HMs increases cytotoxicity for bacteria in abscesses, to an extent that is greater than the sum of the two treatments alone, demonstrating a synergistic effect. This treatment platform may find other clinical applications, especially for localized hyperthermia-based cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call