Abstract
We suggest that the study of the general behavior of a chemical system in planetary atmospheres might be equivalent to the study of the evolution of connected components in a random graphs model. The main result of our model is that interacting elements in a system self-organize in such a way that the distribution in size of the created compounds follows a power-law relation. We show that hydrocarbons in giant planets and Titan atmospheres might follow the same type of distribution, suggesting that atmospheric photochemical systems might self-organized as random graphs do. This property could give a new and predictive method for investigations of chemical complexity in planetary atmospheres.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have