Abstract
The pressure–temperature phase diagrams of different zirconia samples prepared by oxidation of Zircaloy-4 and Zr–1%Nb–0.12O alloys were monitored by Raman spectrometry from 0.1 MPa to 12 GPa and from 300 to 640 K. These new diagrams show that the monoclinic–tetragonal equilibrium line is strongly downshifted in temperature compared to literature measurements performed on usual polycrystalline zirconia. In addition, the monoclinic–orthorhombic equilibrium line is slightly shifted to higher pressure (i.e. 6 GPa). The crystallite sizes smaller than 30 nm, are thought to be responsible for these equilibrium line displacements. The tetragonal phase obtained in temperature under high pressure can be quenched at room temperature, if the pressure is maintained, and it is destabilised and transforms completely into monoclinic phase if the pressure is released. These results confirm that coupled effects of stress, temperature and nanosized grain are responsible for the formation of the tetragonal phase near the metal/oxide interface during the oxidation of zirconium-based alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.