Abstract
IntroductionThe potential of the positron-emitting zirconium-89 (89Zr) (t1/2 = 78.4 h) has been recently reported for immune positron emission tomography (immunoPET) radioimmunoconjugates design. In our work, we explored the optimized preparation of [89Zr]Zr-DFO-nimotuzumab, and evaluated 89Zr-labeled monoclonal antibody (mAb) construct for targeted imaging of epidermal growth factor receptor (EGFR) overexpressed in glioma. MethodsTo optimize the radiolabeling efficiency of 89Zr with DFO-nimotuzumab, multiple immunoconjugates and radiolabeling were performed. Radiolabeling yield, radiochemical purity, stability, and activity assay were investigated to characterize [89Zr]Zr-DFO-nimotuzumab for chemical and biological integrity. The in vivo behavior of this tracer was studied in mice bearing subcutaneous U87MG (EGFR-positive) tumors received a 3.5 ± 0.2 MBq/dose using PET/CT imaging. One group mice bearing subcutaneous U87MG (EGFR-positive) tumors received [89Zr]Zr-DFO-nimotuzumab (3.5 ± 0.2 MBq, ~3 μg) (nonblocking) for immunoPET; the other group had 30 μg predose (blocking) of cold nimotuzumab 24 h prior to [89Zr]Zr-DFO-nimotuzumab. Results[89Zr]Zr-DFO-nimotuzumab was prepared with high radiochemical yield (>90%), radiochemical purity (>99%), and specific activity (115 ± 0.8 MBq/mg). In vitro validation showed that [89Zr]Zr-DFO-nimotuzumab had an initial immunoreactive fraction of 0.99 ± 0.05 and remained active for up to 5 days. A biodistribution study revealed excellent stability of [89Zr]Zr-DFO-nimotuzumab in vivo compared with 89Zr as a bone seeker. High uptake in the liver and heart and modest penetration in the brain were observed, with no significant accumulation of activity in other organs. ImmunoPET studies also indicated prominent image contrast that remarkably high uptake up to ~20%ID/g for nonblocking and ~2%ID/g for blocking in tumor between 12 and 120 h after administration. ConclusionThese studies developed a radiopharmaceutical [89Zr]Zr-DFO-nimotuzumab with optimized synthesis. The potential utility of [89Zr]Zr-DFO-nimotuzumab in assessing EGFR status in glioma was demonstrated in this study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.