Abstract
ObjectiveTo explore the potential imaging biomarkers for predicting Traditional Chinese medicine (TCM) deficiency and excess syndrome in prostate cancer (PCa) patients by radiomics approach based on MR imaging. MethodsA total of 121 PCa patients from 2 centers were divided into 1 training cohort with 84 PCa patients and 1 validation cohort with 37 PCa patients. The PCa patients were divided into deficiency and excess syndrome group according to TCM syndrome differentiation. Radiomic features were extracted from T2-weighted imaging (T2WI), diffusion-weighted imaging and apparent diffusion coefficient images originated from diffusion-weighted imaging. A radiomic signature was constructed after reduction of dimension in training group by the minimum redundancy maximum relevance and the least absolute shrinkage and selection operator. The performance of the model was evaluated by receiver operating characteristic (ROC) curve and calibration curve. ResultsThe radiomic scores of PCa with TCM excess syndrome group were statistically higher than those of PCa with TCM deficiency syndrome group among T2WI, diffusion-weighted imaging and apparent diffusion coefficient imaging models. The area under ROC curves for T2WI, diffusion-weighted imaging and apparent diffusion coefficient imaging models were 0.824, 0.824, 0.847 in the training cohort and 0.759, 0.750, 0.809 in the validation cohort, respectively. The apparent diffusion coefficient imaging model had the best discrimination in separating patients with TCM excess syndrome and deficiency syndrome, and its accuracy was 0.788, 0.778 in the training and validation cohort, respectively. The calibration curve demonstrated that there was a high consistency between the prediction of radiomic scores and the actual classification of TCM's deficiency and excess syndrome in PCa. ConclusionThe radiomic signature based on MR imaging can be performed as a non-invasive, potential approach to discriminate TCM deficiency syndrome from excess syndrome in PCa, in which apparent diffusion coefficient imaging model has the best diagnostic efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.