Abstract

Optical spectrometers capable of fast spectral measurements are useful in many fields spanning from industrial manufacturing to scientific research. However, conventional spectrometers, especially those applicable to continuous-wave light measurements, are limited in speed due to the need of taking multiple measurements sequentially and/or direct current (dc) detection that are subject to noise influence. We report a new radio frequency (RF) tagging spectrometer, which breaks these limitations and dramatically accelerates measurements. In this new spectrometer, an acousto-optic deflector (AOD) is used to encode the intensity at each wavelength to the amplitude of a different beat RF signal. As a result, all RF signals can be summed up and detected simultaneously by a fast single-channel detector. The spectrum is obtained by taking the Fourier transform of the summed RF signal. The spectrometer is evaluated by measuring both multiline and broadband light sources with a speed up to 1 MHz as well as light scattering spectra with a speed of 64 kHz. With the ability to select wavelengths by programming the driving RF signal, the spectrometer offers great flexibility to detect part of a spectrum that contains most useful information with an unprecedented speed limit up to multiple megahertz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.