Abstract

Most existing MIMO (multiput-input multiput-output) schemes optimize only either the diversity gain or the multiplexing gain. To obtain a good tradeoff between these two, the quasi-orthogonal group space-time (QoGST) architecture is proposed, wherein the transmit stream is subgrouped but encoded via an inter-group space-time block encoder, with group interference suppression at the receiver. This paper also considers another combined space-time coding and layered space-time architecture, which we refer to as group layered space-time (GLST), where space-time block coding is employed within each group. Under the assumption of Rayleigh fading and a prior perfect channel state information at the receiver, a performance analysis will demonstrate that both QoGST and GLST can achieve a good diversity-multiplexing tradeoff. QoGST is even superior to GLST. Simulation results will validate our analysis and further show that compared to the existent layered space-time block code (LSTBC) scheme, both QoGST and GLST can achieve a significant performance gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.