Abstract

We have measured the quasi-elastic neutron scattering (QENS) of an electrohydrodynamic liquid bridge formed between two beakers of pure water when a high voltage is applied, a setup allowing to investigate water under high-voltage without high currents. From this experiment two proton populations were distinguished: one consisting of protons strongly bound to oxygen atoms (immobile population, elastic component) and a second one of quasi-free protons (mobile population, inelastic component) both detected by QENS. The diffusion coefficient of the quasi-free protons was found to be D = (26 ± 10) × 10(-5) cm(2) s(-1) with a jump length lav ∼ 3 Å and an average residence time of τ0 = 0.55 ± 0.08 ps. The associated proton mobility in the proton channel of the bridge is ∼9.34 × 10(-7) m(2) V(-1) s(-1), twice as fast as diffusion-based proton mobility in bulk water. It also matches the so-called electrohydrodynamic or "apparent" charge mobility, an experimental quantity which so far has lacked molecular interpretation. These results further corroborate the proton channel model for liquid water under high voltage and give new insights into the molecular mechanisms behind electrohydrodynamic charge transport phenomena and delocalization of protons in liquid water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.