Abstract

We find that the vibrational potential of the O-H stretch vibrations of liquid water shows extreme anharmonicity that arises from the O-H O hydrogen bond interaction. We observe that already in the second excited state of the O-H stretch vibration, the hydrogen atom becomes delocalized between the oxygen atoms of two neighboring water molecules. The energy required for this delocalization is unexpectedly low and corresponds to less than 20% of the dissociation energy of the O-H bond of the water molecule in the gas phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.