Abstract

We present a generalized nuclear spin bath model for embedded electron spin decoherence in organic solids at low temperatures, which takes the crucial influence from hindered methyl group rotation tunneling into account. This new, quantum many body model, after resolved using the cluster correlation expansion method, predicts the decoherence profiles directly from the proton relative position and methyl group tunneling splitting inputs. Decoherence profiles from this model explain adequately the influence from both strongly and weakly hindered methyl groups to embedded electron spin decoherence: The former accelerates decoherence by increasing the nearest neighbor nuclear spin coupling, while the latter enhances coherence through a novel confinement like' mechanism, in which the very strong nuclear spin coupling from the tunneling splitting term suppresses those protons on the methyl rotors from participating in the bath dynamics. Both types of influences are successfully proven experimentally in representative organic polycrystalline matrices: methyl malonic acid for strongly hindered and acetamide for weakly hindered methyl groups, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.