Abstract

Four-dimensional Yang-Mills theory formulated through an action on twistor space has a larger gauge symmetry than the usual formulation, which in previous work was shown to allow a simple gauge transformation between textbook perturbation theory and the Cachazo-Svr\ifmmode \check{c}\else \v{c}\fi{}ek-Witten rules. In this paper we study nonsupersymmetric twistor Yang-Mills theory at loop level using the background field method. For an appropriate partial quantum field gauge choice it is shown that the calculation of the effective action is equivalent to (the twistor lift of) the calculation in ordinary Yang-Mills theory in the Chalmers and Siegel formulation to all orders in perturbation theory. A direct consequence is that the twistor version of Yang-Mills theory is just as renormalizable in this particular gauge. As applications an explicit calculation of the Yang-Mills beta function and some preliminary investigations into using the formalism to calculate S-matrix elements at loop level are presented. In principle the technique described in this paper generates consistent quantum completions of the Cachazo-Svr\ifmmode \check{c}\else \v{c}\fi{}ek-Witten rules. However, by inherent limitations of the partial gauge choice employed here, this offers in its current form mainly simplifications for tree-level forestry. The method is expected to be applicable to a wide class of four-dimensional gauge theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call