Abstract

Abstract This chapter, which is the last chapter in Part I, is devoted to an extensive discussion of quantum gauge theories, which is based on functional integrals and Lagrangian quantization. After introducing the notion of a Yang-Mills gauge theory, the Faddeev-Popov method (also known as the DeWitt-Faddeev-Popov procedure) is explained. Starting from this point, the BRST symmetry is formulated, and the corresponding Ward identities (called Slavnov-Taylor identities in some cases) established. More specialized subjects, such as the gauge dependence of effective action and the background field method, are dealt with in detail. In addition, Yang-Mills theory is analyzed as a primary example of general theorems concerning the renormalization of gauge theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.