Abstract

Although it is usually stated that the Hartree–Fock method formally scales as N4, where N is the number of basis functions employed in the calculation, it is also well known that mathematical bounds computed with the Schwarz inequality can be used to screen and eliminate four-center two-electron integrals smaller than a certain threshold. In this work, quantitative data is presented to illustrate the effects of this integral screening on the scaling properties of the Hartree–Fock (HF) method. Calculations are performed on a range of carbon–hydrogen model systems, two-dimensional graphitic sheets, and three-dimensional diamond pieces, to determine the effective scaling exponent α of the computational expense. The data obtained in this paper for calculations including over 250 carbon atoms and 1500 basis functions shows two significant trends: (1) in the asymptotic limit of large molecules, α is found to be approximately 2.2–2.3, and (2) for molecules of modest size, α is still very much less than 4. Therefore, integral screening is quantitatively shown to substantially reduce the Hartree–Fock scaling from its formal value of N4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call