Abstract
This study presents a quantitative strain analysis of a single-crystal Si membrane for high performance flexible devices. Advanced thinning and transfer methods were used to make flexible single-crystal Si devices. Two Si membrane strain gauges, each with a different stack, were fabricated on a polydimethylsiloxane/polyimide film using a silicon-on-insulator wafer. One gauge contains a 10-μm-thick handling Si layer, whereas the handling Si layer was completely removed for the other case. Although the Si membrane with the 10-μm-thick handling Si layer is flexible, the strain applied to the active Si layer (0.127%) is three times higher than the strain applied to the Si membrane without the handling Si layer (0.037%) at a bending radius of 5 mm. This leads to the more reliable electrical and mechanical performance of the device fabricated on the Si membrane without the handling Si layer. The experimental results were verified through a finite element method simulation and analytical modeling. The quantitative strain analyses for flexible devices suggested here can expedite the realization of high performance flexible electronics using a single crystal silicon active layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.