Abstract

To establish and optimize a sensitive and specific quantitative real-time polymerase chain reaction (PCR) method for detection of hepatitis B virus covalently closed circular DNA (HBV cccDNA) in liver tissue. Specific primers and probes were designed to detect HBV DNA (tDNA) and cccDNA. A series of plasmids (3.44 × 10(0) - 3.44 × 10(9) copies/µl) containing a full double-stranded copies of HBV genome (genotype C) were used to establish the standard curve of real-time PCR. Liver samples of 33 patients with HBV related hepatocellular carcinoma (HCC), 13 Chronic hepatitis B patients (CHB) and 10 non-HBV patients were collected to verify the sensitivity and specificity of the assay. A fraction of extracted DNA was digested with a Plasmid-Safe ATP-dependent Dnase (PSAD) for HBV cccDNA detection and the remaining was used for tDNA and β-globin detection. The amount (copies/cell) of HBV cccDNA and tDNA were measured by a real-time PCR, using β-globin housekeeping gene as a quantitation standard. The standard curves of real-time PCR with a linear range of 3.44 × 10(0) to 3.44 × 10(9) copies/µl were established for detecting HBV cccDNA and tDNA, and both of the lowest detection limits of HBV cccDNA and tDNA were 3.44 × 10(0) copies/µl. The lowest quantitation levels of HBV cccDNA in liver tissues tested in 33 HBV related HCC patients and 13 CHB patients were 0.003 copies/cell and 0.031 copies/cell, respectively. HBV cccDNA and tDNA in liver tissue of 10 non-HBV patient appeared to be negative. The true positive rate was increasing through the digestion of HBV DNA by PSAD, and the analytic specificity of cccDNA detection improved by 7.24 × 10(2) times. Liver tissues of 2 patients were retested 5 times in the PCR for detecting cccDNA and the coefficient of variations on cycle threshold (Ct) were between 0.224% - 0.609%. A highly sensitive and specific quantitative real time PCR method for the detection of HBV cccDNA in liver tissue was established and could be used for clinical and epidemiological studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.