Abstract
While adeno-associated virus (AAV) is widely accepted as an attractive vector for gene therapy, it also serves as a model virus for understanding virus biology. In the latter respect, the recent discovery of a non-structural AAV protein, termed assembly-activating protein (AAP), has shed new light on the processes involved in assembly of the viral capsid VP proteins into a capsid. Although many AAV serotypes require AAP for assembly, we have recently reported that AAV4, 5, and 11 are exceptions to this rule. Furthermore, we demonstrated that AAPs and assembled capsids of different serotypes localize to different subcellular compartments. This unexpected heterogeneity in the biological properties and functional roles of AAPs among different AAV serotypes underscores the importance of studies on AAPs derived from diverse serotypes. This manuscript details a straightforward dot blot assay for AAV quantitation and its application to assess AAP dependency and serotype specificity in capsid assembly. To demonstrate the utility of this dot blot assay, we set out to characterize capsid assembly and AAP dependency of Snake AAV, a previously uncharacterized reptile AAV, as well as AAV5 and AAV9, which have previously been shown to be AAP-independent and AAP-dependent serotypes, respectively. The assay revealed that Snake AAV capsid assembly requires Snake AAP and cannot be promoted by AAPs from AAV5 and AAV9. The assay also showed that, unlike many of the common serotype AAPs that promote heterologous capsid assembly by cross-complementation, Snake AAP does not promote assembly of AAV9 capsids. In addition, we show that the choice of nuclease significantly affects the readout of the dot blot assay, and thus, choosing an optimal enzyme is critical for successful assessment of AAV titers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have