Abstract

BackgroundCardiotrophin‐1 (CT‐1) is a cytokine that could induce cardiomyocytes hypertrophy and dysfunction. Plasma CT‐1 might serve as a cardiac biomarker both in diagnosis, staging, and prognostic assessment of heart failure.MethodsIn this study, a one‐step paramagnetic particles‐based chemiluminescence immunoassay (MPs‐CILA) for rapid and sensitive detection of plasma CT‐1 was established. Plasma samples were directly incubated with biotin‐labeled anti‐CT‐1 antibody (bio‐Ab) and acridine ester labeled anti‐CT‐1 antibody (AE‐Ab) to form sandwiched complex. The sandwiched CT‐1 was then captured by streptavidin modified paramagnetic particles (MPs‐SA) for rapid separation and signal generation.ResultsThe proposed MPs‐CLIA presents a laudable linear relationship ranging from 7.8 pg/mL to 200 ng/mL with a detection limit of 1.0 pg/mL. The recoveries of spiked human plasma samples at low (10pg/mL), medium (100 pg/mL), and high (800 pg/mL) levels of CT‐1 were 96%, 104%, and 110% respectively. The intra‐analysis coefficient variation (CVs) of the 3 samples was 8.92%, 6.69%, and 3.54%, respectively. And the inter‐analysis coefficient variation (CVs) was 9.25%, 10.9%, and 4.3%, respectively. These results strongly indicate high sensitivity, wide linear range, acceptable precision, and applicable reproducibility of the proposed method to detect plasma level of CT‐1. Finally, Plasma CT‐1 from 140 subjects with or without chronic heart failure was analyzed to assess the clinical application of MPs‐CILA.ConclusionsNoteworthily, the MPs‐CLIA method is highly automated such that it is suitable for high‐throughput detection of CT‐1 in clinical inspection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call