Abstract

Abstract A quantitative method for the calculation of phase change parameters of salt-based phase change materials (PCMs) has been proposed. This technique involves the estimation of mold-salt interfacial heat flux by solving Fourier’s law of heat conduction within the salt and using it for the calculation of phase change enthalpy of salt PCMs. Radial heat transfer was ensured by keeping the length to diameter (L/D) ratio of the mold equal to 5. The proposed method eliminates any drawbacks involved with sample size, reference material, the baseline fitting calculations, and the errors introduced due to the selection of solidification points. Pure salt PCMs such as potassium nitrate (KNO3), sodium nitrate (NaNO3), and solar salt mixture (60 wt. % NaNO3 + 40 wt. % KNO3) were used for validation of this technique. The thermal behaviors of the salt and the mold during solidification of the salt sample were analyzed, and solidification characteristics such as cooling rate, solidification time, and phase change enthalpy of PCMs were determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.