Abstract
A special data compression approach using a quadtree-based method is proposed for allocating very large demand points to their nearest facilities while eliminating aggregation error. This allocation procedure is shown to be extremely effective when solving very large facility location problems in the Euclidian space. Our method basically aggregates demand points where it eliminates aggregation-based allocation error, and disaggregates them if necessary. The method is assessed first on the allocation problems and then embedded into the search for solving a class of discrete facility location problems namely the p-median and the vertex p-center problems. We use randomly generated and TSP datasets for testing our method. The results of the experiments show that the quadtree-based approach is very effective in reducing the computing time for this class of location problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.