Abstract

We consider the problem of minimizing a sum of Euclidean norms. $$F(x) = \sum\nolimits_{i = 1}^m {||r_i } (x)||$$ here the residuals {r i(x)} are affine functions fromR n toR 1 (n≥1≥2,m>-2). This arises in a number of applications, including single-and multi-facility location problems. The functionF is, in general, not differentiable atx if at least oner i (x) is zero. Computational methods described in the literature converge quite slowly if the solution is at such a point. We present a new method which, at each iteration, computes a direction of search by solving the Newton system of equations, projected, if necessary, into a linear manifold along whichF is locally differentiable. A special line search is used to obtain the next iterate. The algorithm is closely related to a method recently described by Calamai and Conn. The new method has quadratic convergence to a solutionx under given conditions. The reason for this property depends on the nature of the solution. If none of the residuals is zero at* x, thenF is differentiable at* x and the quadratic convergence follows from standard properties of Newton's method. If one of the residuals, sayr i * x), is zero, then, as the iteration proceeds, the Hessian ofF becomes extremely ill-conditioned. It is proved that this illconditioning, instead of creating difficulties, actually causes quadratic convergence to the manifold (xℛr i (x)=0}. If this is a single point, the solution is thus identified. Otherwise it is necessary to continue the iteration restricted to this manifold, where the usual quadratic convergence for Newton's method applies. If several residuals are zero at* x, several stages of quadratic convergence take place as the correct index set is constructed. Thus the ill-conditioning property accelerates the identification of the residuals which are zero at the solution. Numerical experiments are presented, illustrating these results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.