Abstract
Newton's method for calculating the eigenvalue and the corresponding eigenvector of a symmetric real matrix is considered. The nonlinear system of equations solved by Newton's method consists of an equation that determines the eigenvalue and eigenvector of the matrix and the normalization condition for the eigenvector. The method allows someone to simultaneously calculate the eigenvalue and the corresponding eigenvector. Initial approximations for the eigenvalue and the corresponding eigenvector can be found by the power method or by the reverse iteration with shift. A simple proof of the convergence of Newton's method in a neighborhood of a simple eigenvalue is proposed. It is shown that the method has a quadratic convergence rate. In terms of computational costs per iteration, Newton's method is comparable to the reverse iteration method with the Rayleigh ratio. Unlike reverse iteration, Newton's method allows to compute the eigenpair with better accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.