Abstract

This paper presents a dual control-based approach for optimal trajectory planning under uncertainty. The method approximately converts a nonlinear stochastic optimal control problem whose objective function is a combination of quadratic stage and/or terminal costs, with additive Gaussian process and measurement noises, into a deterministic optimal control problem by augmenting the uncertainty state defined by the square-root of the estimation error covariance matrix. The open-loop solution to the resulting deterministic optimal control reformulation is obtained using an existing pseudo-spectral method. The effectiveness of the proposed dual control-based approach is verified with two numerical examples of trajectory planning for two-dimensional robot motion with lack of observability for localization, which highlights the impact of the dual effect on the shape of designed paths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call