Abstract

Discriminatory fluorescence detection of various metal ions is of significant importance in environmental and health-related applications. A luminescent hydrogen-bonded organic framework (HOF) material, PFC-1 was synthesized using 1,3,6,8-tetra(4-carboxylbenzene) pyrene (H4TBAPy) as the organic building block. The fluorescence behavior of PFC-1 is influenced by the concentration of the suspension, demonstrating different emissions characteristic of monomer and excimer fluorescence, which are highly sensitive to the surrounding environment. This allows for the potential differentiation and sensing of different target analytes. PFC-1 showed discriminatory fluorescence sensing performance towards metal ions such as Al3+, Sc3+, Cr3+, and Cu2+, with changes in fluorescence intensity, emission peak shifts, and intensity ratio changes between monomer and excimer emissions. Furthermore, a smartphone-based detection strategy was proposed, leveraging color recognition capabilities of smartphones for onsite and real-time sensing. The work demonstrate that PFC-1 is a promising material for the development of portable, cost-effective fluorescent sensors for onsite and real-time detection of metal ions. The integration of PFC-1 with smartphone technology paves the way for practical applications in environmental monitoring, industrial processes, and healthcare diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.