Abstract
A facile method has been developed for fabricating selective and sensitive electrochemical sensors for the detection of toxic metal ions, which invokes incorporation of palladium nanoparticles (Pd NPs) on porous activated carbons (PACs). The PACs, which were derived from waste biomass feedstock (fruit peels), possess desirable textural properties and porosities favorable for dispersion of Pd NPs (ca. 3-4 nm) on the graphitic PAC substrate. The Pd/PAC composite materials so fabricated were characterized by a variety of different techniques, such as X-ray diffraction, field-emission transmission electron microscopy, gas physisorption/chemisorption, thermogravimetric analysis, and Raman, Fourier-transform infrared, and X-ray photon spectroscopies. The Pd/PAC-modified glassy carbon electrodes (GCEs) were exploited as electrochemical sensors for the detection of toxic heavy metal ions, viz., Cd(2+), Pb(2+), Cu(2+), and Hg(2+), which showed superior performances for both individual as well as simultaneous detections. For simultaneous detection of Cd(2+), Pb(2+), Cu(2+), and Hg(2+), a linear response in the ion concentration range of 0.5-5.5, 0.5-8.9, 0.5-5.0, and 0.24-7.5 μM, with sensitivity of 66.7, 53.8, 41.1, and 50.3 μA μM(-1) cm(-2), and detection limit of 41, 50, 66, and 54 nM, respectively, was observed. Moreover, the Pd/PAC-modified GCEs also show perspective applications in detection of metal ions in real samples, as illustrated in this study for a milk sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.